UIB 2 + f (x) + f(x) ց ց ր ր Per tant, el punt ( 3. Una altra forma de veure-ho és calcular la derivada segona i mirar el signe en x = 3: 2 f (x) =

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UIB 2 + f (x) + f(x) ց ց ր ր Per tant, el punt ( 3. Una altra forma de veure-ho és calcular la derivada segona i mirar el signe en x = 3: 2 f (x) ="

Transcripción

1 El cas positiu no té solució. Si analitzam el cas negatiu, ens surt x = x+, d on x =. A continuació fem la taula següent per veure si el valor obtingut és un màxim, mínim o un punt de sella. x + f (x) + + f(x) ց ց ր ր Per tant, el punt (,4) és un mínim. Una altra forma de veure-ho és calcular la derivada segona i mirar el signe en x = : f (x) = (x ) f (x ), ( ) = > 0, Comquef ( )éspositiu, estractad unmínimcomjahavíemcomprovatabans. ii) Per estudiar la convexitat i la concavitat hem de mirar el signe de la derivada segona: x + f (x) + f(x) Serà convexa en la regió (,) (, ) i serà cóncava en l interval (,). d) Calculau la següent integral indefinida x x +x dx. (0 punts) Solució. Ja que el grau del numerador és menor que el del denominador, descomposem la funció racional de la forma següent: x x +x = A x + B x + C x+ = Ax(x+)+B(x+)+Cx. x (x+) Les constants A, B i C han de complir: Ax(x+)+B(x+)+Cx = x. Les constants A B i C valen: A =, B = i C =. La integral serà: x x +x dx = x dx x x+ dx = ln x + x ln x+ +C.

2 Solució. i) La matriu del sistema A i la matriu ampliada A del mateix són les següents: a 5a a a 5a a a b A = 0 a, A = 0 a a+b. 0 a a 0 a a b El determinant de la matriu del sistema A val: det(a) = 6a 7a +a. Si resolem l equació 6a 7a +a = 0, obtenim que a =. Per tant, tenim que si a, el rang de les matrius A i de A serà i el sistema serà compatible determinat. Falta estudiar el cas a =. Per a =, la matriu del sistema és: La matriu ampliada és: b 0 b+. El rang de la matriu A val 0 b clarament. Per calcular el rang de la matriu A, fem el determinant següent: 5 b b+ b = 5 0b. Si b, el rang de la matriu A serà i el sistema és incompatible. Per b =, 4 4 el rang de la matriu A serà i el sistema serà compatible indeterminat. ii) Hem de solucionar el sistema per a = i b =. 4 El sistema a resoldre és: Les solucions són: y = 4, z = c) Sigui la funció f(x) = (x ) (x ). 5y +z = 4, y z = 5 4, y +z = 4 i la x lliure. i) Calculau els extrems de la funció f(x). (7 punts) ii) Estudieu quan la funció f(x) és cóncava o convexa. ( punts) Solució. i) Per calcular els extrems, primer fem la derivada: f (x) = (x ) (x ). Si igualam la derivada a 0, ens surt un únic valor de x: x = : (x ) = 0, (x ) (x ) = (x ), (x ) = (x ), x = ±(x ).

3 Prova d accés a la Universitat (0) Matemàtiques II Model OPCIÓ B a) Considerem el punt P(,,) i la recta r : x = y+ = z. i) Calculau l equació general del pla π que conté el punt P i la recta r. (4 punts) ii) Calculau el punt simètric de P respecte la recta r. (6 punts) Solució. i) El pla π tendrà com a vectors directors el vector director de la recta (v = (,,)) i el vector format per un punt del pla i el punt P (v = (,,) (,,) = (,, )). L equació del pla π serà: x y z = 0, Arreglant l expressió anterior surt: π : x+7y z +0 = 0. ii) El punt simètric P = (x,y,z) verifica que el vector PP = (x,y,z ) és perpendicular al vector director de la recta r, v = (,,), i que el punt mig entre P i P, ( x+, y+, ) z+, està en la recta r: (x )+(y )+(z ) = 0 x+ + = y+, x+ = z+. El sistema anterior es pot escriure com: x+y +z = 0, x y = 8, x z = 6. El sistema d equacions anterior té com a solucions x = 6, y = 7 8 i z = 7. 7 El punt P serà, doncs, P = ( 6 7, 8 7 7),. b) i) Discutiu per a quins valors d a i b el sistema següent és compatible: (a )x+5ay +az = a b, y az = a+b, ay +( a)z = b. (7 punts) ii) Resoleu-lo en el cas (o casos) en que sigui compatible indeterminat. ( punts)

4 y x x 0 x L àrea demanada serà: A = = ( (4 x x )dx = 4 4 ) = 6. (4 x )dx = ] [4x x

5 a = 0: el sistema a resoldre és: x y = 0, x = 0, x y = 0. Les solucions són: x = 0, y = 0 i z lliure. a = 5: el sistema a resoldre és: 4 x+ 7y = 0, 8 x 5z = 5, x y 5z = 5. Les solucions són: y = x, z = x i x lliure. c) Sigui la funció f(x) = sin(x) x. Demostreu que la funció f(x) té exactament tres zeros en l interval ( π, π ). O sigui, heu de provar que existeixen exactament tres valors de x en l interval ( π, π ) tals que f(x) = 0. (0 punts) Solució. Si fem la derivada, tenim que f (x) = cos(x). Ara calculem els zeros de la derivada en l interval ( π, π ) : cos(x) = 0, cos(x) =. Hi ha dos valors de x que compleixen l equació anterior: x = ± π. Com que la derivada té dos zeros 6 en l interval considerat, sabem que, aplicant el Teorema de Rolle, la funció f(x) té zeros com a màxim en l interval ( π, π ). Per veure que hi ha exactament tres zeros, trobem canvis de signe: ( f π ) = π ( > 0, f π ) = + π 4 4 < 0. Pel Teorema de Bolzano, tenim que hi ha un valor x entre π i π 4 Si fem f(0) = 0. Per tant, un dels tres valors buscats és x = 0. Per últim, si fem ( π f = 4) π ( π ) 4 > 0, f = π < 0. tal que f(x) = 0. Per tant, aplicant el Teorema de Bolzano, deduïm que existeix un valor x entre π 4 i π tal que f(x) = 0. d) Feu un dibuix del recinte limitat per les corbes y (x) = 4 x, y (x) = x. (4 punts) Calculau l àrea d aquest recinte. (6 punts) Solució. Primer de tot calculem els punts d intersecció de les corbes: 4 x = x, x = 4, x =, x = ±. Les dues corbes es tallen als punts (,) i (,). El gràfic del recinte es pot veure a la figura següent:

6 El determinant de la matriu del sistema A val: det(a) = a a 5a. Si resolem l equació a a 5a = 0, obtenim que a =,0, 5. Per tant, tenim que si a,0, 5, el rang de les matrius A i de A serà i el sistema serà compatible determinat. Falta estudiar els casos a =, a = 0 i a = 5. 0 Per a =, la matriu del sistema és: La matriu ampliada és: 0 0. El rang de la matriu A val clarament. Per calcular el rang de la matriu ampliada fem el determinant següent: = 0. Per tant, el rang de la matriu A serà i el sistema serà compatible indeterminat. 0 Si a = 0, la matriu del sistema serà: La matriu ampliada és: El rang de la matriu A val clarament. Per calcular el rang de la matriu ampliada fem el determinant següent: = El rang de la matriu A serà i el sistema serà compatible indeterminat Si a = 5 la matriu del sistema serà: La matriu ampliada és: El rang de la matriu A val clarament. Per calcular el rang de lamatriu ampliada fem el determinant següent: = 0. Per tant, el rang de la matriu A serà i el sistema serà compatible indeterminat. ii) Hem de solucionar el sistema en els casos següents: a = : el sistema a resoldre és: x y = 0, z =, x y +z =. Les solucions són: y = x, z = i x lliure.

7 Prova d accés a la Universitat (0) Matemàtiques II Model Contestau de manera clara i raonada una de les dues opcions proposades. Es disposa de 90 minuts. Cada qüestió es puntua sobre 0 punts. La qualificació final s obté de dividir el total entre 4. Es valoraran la correcció i la claredat en el llenguatge(matemàtic i no matemàtic) emprat per l alumne. Es valoraran negativament els errors de càlcul. OPCIÓ A a) i) Donada la matriu A = ii) Calculeu A per a =. a +a a 0 a a 0 a, calculeu el seu rang en funció d a. (6 punts) (4 punts) Solució. i) Si calculam el determinant de la matriu A obtenim: deta = a +8a. Igualant el determinant anterior a 0, veim que s anul la només per a = 0. D aquí podem deduir que el rang de la matriu A serà si a 0 ja que el determinant de la matriu és diferent de 0. Si a = 0, obtenim la matriu menor 0 0 = és diferent de 0. ii) La matriu A per a = val , que, clarament té rang ja que el La seva inversa val: b) i) Discutiu per a quins valors d a el sistema següent és compatible: (a+)x+(a )y = 0, (a+)x az = a, x+(a )y az = a. (7 punts) ii) Resoleu-lo en el cas (o casos) en que sigui compatible indeterminat. ( punts) Solució. i) La matriu del sistema A i la matriu ampliada A del mateix són les següents: a+ a 0 a+ a 0 0 A = a+ 0 a, A = a+ 0 a a. a a a a a

Prova d accés a la Universitat (2013) Matemàtiques II Model 1. (b) Suposant que a = 1, trobau totes les matrius X que satisfan AX + Id = A, on Id

Prova d accés a la Universitat (2013) Matemàtiques II Model 1. (b) Suposant que a = 1, trobau totes les matrius X que satisfan AX + Id = A, on Id UIB Prova d accés a la Universitat () Matemàtiques II Model Contestau de manera clara i raonada una de les dues opcions proposades. Es disposa de 9 minuts. Cada qüestió es puntua sobre punts. La qualificació

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves dʼaccés a la Universitat. Curs 2009-2010 Matemàtiques Sèrie 1 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què és el que voleu fer i per què. Cada qüestió val

Más detalles

Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i.

Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. Oficina d Accés a la Universitat Pàgina 1 de 11 Sèrie 5 1. Siguin i les rectes de d equacions : 55 3 2 : 3 2 1 2 3 1 a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. b) Trobeu l

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2012

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2012 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 4 1 1 k 1.- Determineu el rang de la matriu A = 1 k 1 en funció del valor del paràmetre k. k 1 1 [2 punts] En ser la matriu

Más detalles

x + 2 y = 3 2 x y = 1 4 x + 3 y = k a) Afegiu-hi una equació lineal de manera que el sistema resultant sigui incompatible.

x + 2 y = 3 2 x y = 1 4 x + 3 y = k a) Afegiu-hi una equació lineal de manera que el sistema resultant sigui incompatible. 1998 - Sèrie 3 - Qüestió 4 Discutiu el sistema d'equacions a x y + 2 z = (2 a) 2 x + 3 y z = 3a x + 2 y z = 2a segons els valors del paràmetre a. 1999 - Sèrie 1 - Qüestió 1 Resoleu el sistema següent per

Más detalles

Proves d accés a la Universitat per a més grans de 25 anys Convocatòria 2013

Proves d accés a la Universitat per a més grans de 25 anys Convocatòria 2013 Pàgina 1 de 5 Sèrie 3 Opció A A1.- Digueu de quin tipus és la progressió numèrica següent i calculeu la suma dels seus termes La progressió és geomètrica de raó 2 ja que cada terme s obté multiplicant

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2009

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2009 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 1 QÜESTIONS 1.- Considereu la matriu A = ( ) A 2 1 0 =. 2 1 [2 punts] ( ) a 0. Calculeu el valor dels paràmetres a i b perquè

Más detalles

1.- Sabem que el vector (2, 1, 1) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c. . cx by +2z = b

1.- Sabem que el vector (2, 1, 1) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c. . cx by +2z = b Oficina d Organització de Proves d Accés a la Universitat Pàgina de 5 PAU 0 - Sabem que el vector (,, ) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c cx by +z = b Calculeu el valor

Más detalles

IES CTEIB. Departament de Matemàtiques. Matemàtiques II. Problemes proposats en les PAU. José Luis Bernal Garcías. Curs

IES CTEIB. Departament de Matemàtiques. Matemàtiques II. Problemes proposats en les PAU. José Luis Bernal Garcías. Curs IES CTEIB Departament de Matemàtiques Matemàtiques II Problemes proposats en les PAU José Luis Bernal Garcías Curs 016-17 Índex 1 Límits, continuïtat i derivabilitat 5 1.1 Enunciats.................................................

Más detalles

Examen FINAL M2 FIB-UPC 12 de juny de 2015

Examen FINAL M2 FIB-UPC 12 de juny de 2015 Examen FINAL M FIB-UPC 1 de juny de 015 1. ( punts Sigui a R, calculeu els límits següents segons els valors d a: n + n n + a+ a+n a n n n, n n + n!.. ( punts Considereu la integral següent: I = 1.8 1

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2012-2013 Matemàtiques Sèrie 4 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts.

Más detalles

INTEGRACIÓ: resolució exercicis bàsics ex res I.1

INTEGRACIÓ: resolució exercicis bàsics ex res I.1 INTEGRACIÓ: resolució exercicis bàsics ex res I. R. Aplicant el teorema d integració per parts, calculeu les següents integrals: (a) π x cos xdx (b) π e x sin xdx eπ + (c) e ln xdx (d) π/ π/ e x cos xdx

Más detalles

1. SISTEMA D EQUACIONS LINEALS

1. SISTEMA D EQUACIONS LINEALS 1. SISTEMA D EQUACIONS LINEALS 1.1 Equacions lineals Una equació lineal està composta de coeficients (nombres reals) acompanyats d incògnites (x, y, z,t..o ) s igualen a un terme independent, i les solucions

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 10 PAU 2014 Criteris específics de correcció i qualificació per ser fets públics un cop finalitzades

Oficina d Accés a la Universitat Pàgina 1 de 10 PAU 2014 Criteris específics de correcció i qualificació per ser fets públics un cop finalitzades Oficina d Accés a la Universitat Pàgina 1 de 10 SÈRIE 3 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val punts. Podeu utilitzar

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2008 QÜESTIONS

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2008 QÜESTIONS Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 4 Aquestes pautes no preveuen tots els casos que en la pràctica es poden presentar. Tampoc no pretenen donar totes les possibles

Más detalles

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne:

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne: INS JÚLIA MINGUELL 2n Batxillerat Matemàtiques Tasca Continuada 4 «Matrius i Sistemes d equacions lineals» Alumne: dv, 18 de març 2016 LLIURAMENT: dm, 5 d abril 2016 NOTA: cal justificar matemàticament

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2010

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2010 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 SÈRIE 1 Pregunta 1 3 1 lim = 3. Per tant, y = 3 és asímptota horitzontal de f. + 3 1 lim =. Per tant, = - és asímptota horitzontal

Más detalles

Examen Final 17 de gener de 2013

Examen Final 17 de gener de 2013 MATEMÀTIQUES FIB-UPC Examen Final 7 de gener de 03 a) Representeu gràficament la corba definida per l equació y = x 5x. b) Determineu si el conjunt C = { x R x 5x 6 } és fitat superiorment inferiorment)

Más detalles

Tant si ho fan d una manera com de l altra, si està bé, donar un 10 de l exercici.

Tant si ho fan d una manera com de l altra, si està bé, donar un 10 de l exercici. Model. Criteris específics de correcció Cada qüestió té una puntuació màxima de 10. Cal tenir presents les puntuacions parcials màximes que apareixen a les qüestions amb més d un apartat. Pel que fa a

Más detalles

REPRESENTACIÓ DE FUNCIONS

REPRESENTACIÓ DE FUNCIONS 1. FUNCIONS PRINCIPALS REPRESENTACIÓ DE FUNCIONS 1.1 Rectes Forma: 4 5 1.2 Paràboles Forma: 1.3 Funcions amb radicals Forma: 1.4 Funcions de proporcionalitat inversa Forma: 1.5 Exponencials Forma: 2 1.6

Más detalles

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: ax + by = k a x + b y = k Coeficients de les incògnites: a, a, b, b. Termes independents:

Más detalles

Criteris generals per a la correcció:

Criteris generals per a la correcció: Oficina d Accés a la Universitat Pàgina 1 de 9 SÈRIE 2 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts. Podeu utilitzar

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 12 PAU 2015

Oficina d Accés a la Universitat Pàgina 1 de 12 PAU 2015 Oficina d Accés a la Universitat Pàgina 1 de 12 Sèrie 5 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts. Podeu utilitzar

Más detalles

Matemàtiques Aplicades a les Ciències Socials Criteris específics de correcció Model 2

Matemàtiques Aplicades a les Ciències Socials Criteris específics de correcció Model 2 Prova d accés a la Universitat (2011) Matemàtiques Aplicades a les Ciències Socials Criteris específics de correcció Model 2 Cada qüestió té una puntuació màxima de. Cal tenir presents les puntuacions

Más detalles

DERIVADES. TÈCNIQUES DE DERIVACIÓ

DERIVADES. TÈCNIQUES DE DERIVACIÓ UNITAT 7 DERIVADES. TÈCNIQUES DE DERIVACIÓ Pàgina 56 Tangents a una corba y f (x) 5 5 9 4 Troba, mirant la gràfica i les rectes traçades, f'(), f'(9) i f'(4). f'() 0; f'(9) ; f'(4) 4 Digues uns altres

Más detalles

Matemàtiques Sèrie 1. Instruccions

Matemàtiques Sèrie 1. Instruccions Proves d accés a cicles formatius de grau superior de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 2011 Matemàtiques Sèrie 1 Dades de la persona

Más detalles

Propietats de les desigualtats.

Propietats de les desigualtats. Inequacions Desigualtats Direm que a < b a és menor que b si b a és un nombre positiu. Gràficament, a queda a l esquerra de b. Direm que a > b a major que b si a b és un nombre positiu. Gràficament, a

Más detalles

Convocatòria Matemàtiques. Proves d accés a la universitat per a més grans de 25 anys. Sèrie 1. Fase específica

Convocatòria Matemàtiques. Proves d accés a la universitat per a més grans de 25 anys. Sèrie 1. Fase específica Proves d accés a la universitat per a més grans de 25 anys Matemàtiques Sèrie 1 Fase específica Exercicis Qualificació 1 2 3 Convocatòria 2017 4 5 Problema Suma de notes parcials Qualificació final Qualificació

Más detalles

( 2 3, utilitzeu la matriu inversa B 1 ( 1 4 ( 2 1. Matrius i determinants Sèrie 3 - Qüestió 4. Donada la matriu B =

( 2 3, utilitzeu la matriu inversa B 1 ( 1 4 ( 2 1. Matrius i determinants Sèrie 3 - Qüestió 4. Donada la matriu B = 1998 - Sèrie 3 - Qüestió 4 Donada la matriu B = ( 2 3, utilitzeu la matriu inversa B 1 1 1) B X B = ( 1 4 3 2). per trobar una matriu X tal que 2004 - Sèrie 1 - Qüestió 3 Considereu les matrius Trobeu

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2009

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2009 Oficina d Organització de Proves d Accés a la Universitat Pàgina de 0 SÈRIE 4 QÜESTIONS.- Donats el punt P =(,, ) ilarectar : x = y + = z 5 : a) Trobeu l equació cartesiana (és a dir, de la forma Ax +

Más detalles

f =. El pendent de la recta tangent

f =. El pendent de la recta tangent Oficina d'organització de Proves d'accés a la Universitat Pàgina 1 de 11 PAU 004 SÈRIE. Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals. Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 2008

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 2008 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 008 SÈRIE Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 2005

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 2005 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 005 SÈRIE. Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals. Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 7 PAU 2007

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 7 PAU 2007 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 7 PAU 007 SÈRIE 3 Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

PRIMERA MODEL B Codi B2. A1. C

PRIMERA MODEL B Codi B2. A1. C TOT n 15-16 -1/1 PRIMERA MODEL B Codi B A1 C1 15-16 1- (1) a) Raoneu que els polinomis són funcions contínues a tots el reals (1) b) Digueu que entenem per discontinuïtat de salt i poseu-ne un exemple

Más detalles

+ 1= 0 té alguna arrel real (x en radians).

+ 1= 0 té alguna arrel real (x en radians). Generalitat de Cataluna Departament d Educació Institut d Educació Secundària Jaume Balmes Departament de Matemàtiques n BATX MA Eamen r quadrimestre Nom i Cognoms: Grup: Data: ) Calculeu els its següents:

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2009 QÜESTIONS

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2009 QÜESTIONS Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 009 SÈRIE 4 QÜESTIONS 1. Considereu el sistema d inequacions següent: x 0, y 0 x+ 5y 10 3x+ 4y 1 a) Dibuixeu la regió de solucions

Más detalles

Resolucions de l autoavaluació del llibre de text

Resolucions de l autoavaluació del llibre de text Pàg. 1 de 1 Tenim els vectors u(3,, 1), v ( 4, 0, 3) i w (3,, 0): a) Formen una base de Á 3? b) Troba m per tal que el vector (, 6, m) sigui perpendicular a u. c) Calcula u, ì v i ( u, v). a) Per tal que

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 14 PAU 2010

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 14 PAU 2010 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 14 PAU 1 SÈRIE 1 1.- Trobeu l equació general (és a dir, de la forma Ax+By+Cz+D = ) del pla que conté la recta r 1 : x 1 { x y z =

Más detalles

TEMA 5 : Resolució de sistemes d equacions

TEMA 5 : Resolució de sistemes d equacions TEMA 5 : Resolució de sistemes d equacions 5.1. EQUACIÓ LINEAL AMB n INCÒGNITES Una equació lineal de n incògnites es qualsevol expressió de la forma: a 1 x 1 + a 2 x 2 +... + a n x n = b, on a i b son

Más detalles

Oficina de Coordinació i d'organització de les PAU de Catalunya Pàgina 1 de 8 PAU SÈRIE 3 Pautes de correcció (PAU 2002) MATEMÀTIQUES

Oficina de Coordinació i d'organització de les PAU de Catalunya Pàgina 1 de 8 PAU SÈRIE 3 Pautes de correcció (PAU 2002) MATEMÀTIQUES Oficina de Coordinació i d'organització de les PAU de Catalunya Pàgina 1 de 8 SÈRIE 3 () MATEMÀTIQUES Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals (ara bé, dins de cada pregunta

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 6 PAU 2016 Criteris de correcció

Oficina d Accés a la Universitat Pàgina 1 de 6 PAU 2016 Criteris de correcció Oficina d Accés a la Universitat Pàgina 1 de 6 Criteris de correcció Matemàtiques aplicades a les ciències socials SÈRIE 3 1. Una fàbrica de mobles de cuina ven 1000 unitats mensuals d un model d armari

Más detalles

PROBLEMES PAU SOBRE SISTEMES D EQUACIONS. 1) PAU 1999 Sèrie 1 Qüestió 1: Resoleu el sistema següent per als valors de k que el facin compatible.

PROBLEMES PAU SOBRE SISTEMES D EQUACIONS. 1) PAU 1999 Sèrie 1 Qüestió 1: Resoleu el sistema següent per als valors de k que el facin compatible. PROBLEMES PAU SOBRE SISTEMES D EQUACIONS ) PAU 999 Sèrie Qüestió : Resoleu el sistema següent per als valors de k que el facin compatible. x + y 3 x y 4x + 3y k ) PAU 000 Sèrie 5 Qüestió 4: Discutiu el

Más detalles

Matemàtiques Aplicades a les Ciències Socials Criteris específics de correcció Model 3

Matemàtiques Aplicades a les Ciències Socials Criteris específics de correcció Model 3 Prova d accés a la Universitat (200) Matemàtiques Aplicades a les Ciències Socials Criteris específics de correcció Model 3 Cada qüestió té una puntuació màxima de 0. Cal tenir presents les puntuacions

Más detalles

TEMA 6 : Geometria en l espai. Activitats

TEMA 6 : Geometria en l espai. Activitats TEMA 6 : Geometria en l espai Activitats 1. Siguin els punts A(1,2,3), B(0,1,3) i C(2,3,1) a) Trobeu el vector b) Calculeu el mòdul del vector c) Trobeu el vector unitari d igual direcció que el vector

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 9 PAU 2006 Pautes de correcció

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 9 PAU 2006 Pautes de correcció Oficina d Organització de Proves d Accés a la Universitat Pàgina de 9 PAU 006 SÈRIE Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves dʼaccés a la Universitat. Curs 2008-2009 Matemàtiques aplicades a les ciències socials Sèrie 4 Responeu a TRES de les quatre qüestions i resoleu UN dels dos problemes següents. En les respostes,

Más detalles

Geometria / GE 2. Perpendicularitat S. Xambó

Geometria / GE 2. Perpendicularitat S. Xambó Geometria / GE 2. Perpendicularitat S. Xambó Vectors perpendiculars Ortogonal d un subespai Varietats lineals ortogonals Projecció ortogonal Càlcul efectiu de la projecció ortogonal Aplicació: ortonormalització

Más detalles

Indiqueu en quins punts Y = f(x) no és contínua, el tipus de discontinuïtats de cada cas i les asímptotes que presenta. (0,1 9 +0,8=1,7 punts)

Indiqueu en quins punts Y = f(x) no és contínua, el tipus de discontinuïtats de cada cas i les asímptotes que presenta. (0,1 9 +0,8=1,7 punts) Generalitat de Catalunya Departament d Ensenyament Institut Jaume Balmes Nom: 1.- Trobeu la funció inversa o recíproca de la funció recorregut de la funció yf(). f ( ) Departament de Matemàtiques 1MA:

Más detalles

Institut Jaume Balmes Aplicacions de les derivades I

Institut Jaume Balmes Aplicacions de les derivades I MS 1) Donada la funció y 6 + 8 a) Troba la recta tangent en el seu punt d'infleió. b) Troba la recta normal en el punt de 1 (1+0,5 1,5 punts) ) A la vista de la gràfica d'aquesta funció. a) Estudia la

Más detalles

Al ser un quocient, el denominador no pot ser 0 i al ser una arrel d index senars no hi ha problema Dom = R\{x 3 +3x 2-6x-8=0}= R\{-4, 2, -1}.

Al ser un quocient, el denominador no pot ser 0 i al ser una arrel d index senars no hi ha problema Dom = R\{x 3 +3x 2-6x-8=0}= R\{-4, 2, -1}. Col legi Maristes Sants-Les Corts Departament de matemàtiques Codi Sol PsP..- Troba el domini de les següents funcions. d) f ( ) 6 És un quocient de polinomis Dom R\{ -6} R\{,}. f) f ( ) És un quocient

Más detalles

Matemàtiques Sèrie 1. Instruccions

Matemàtiques Sèrie 1. Instruccions Proves d accés a cicles formatius de grau superior de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 0 Matemàtiques Sèrie SOLUCIONS, CRITERIS DE CORRECCIÓ

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 7 PAU 2015 Criteris de correcció Matemàtiques aplicades a les ciències socials

Oficina d Accés a la Universitat Pàgina 1 de 7 PAU 2015 Criteris de correcció Matemàtiques aplicades a les ciències socials Oficina d Accés a la Universitat Pàgina 1 de 7 PAU 015 SÈRIE 1. Un arbre té un volum de 0 m i, per la qualitat de la seva fusta, es ven a 50 per metre cúbic. Cada any l'arbre augmenta el volum en 5 m.

Más detalles

E.1. Extrems de funcions. Fonaments Matemàtics de l Enginyeria II Yolanda Vidal, Francesc Pozo, Núria Parés

E.1. Extrems de funcions. Fonaments Matemàtics de l Enginyeria II Yolanda Vidal, Francesc Pozo, Núria Parés E.1 Extrems de funcions Extrems de funcions E. Recordatori extrems lliures funcions una variable. Sigui f : [a, b] R derivable en l interval (a, b) i x 0 [a, b] un extrem de la funció f(x). En un entorn

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 5 PAU 2005 QÜESTIONS

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 5 PAU 2005 QÜESTIONS Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 5 PAU 005 SÈRIE Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals. Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

TEMA 4: Equacions exponencials i logarítmiques

TEMA 4: Equacions exponencials i logarítmiques TEMA 4: Equacions exponencials i logarítmiques 4.1. EXPONENCIALS Definim exponencial de base a i exponent n:. Propietats de les exponencials: (1). (2) (3) (4) 1 (5) 4.2. EQUACIONS EXPONENCIALS Anomenarem

Más detalles

Polinomis i fraccions algèbriques

Polinomis i fraccions algèbriques Tema 2: Divisivilitat. Descomposició factorial. 2.1. Múltiples i divisors. Cal recordar que: Si al dividir dos nombres enters a i b trobem un altre nombre enter k tal que a = k b, aleshores diem que a

Más detalles

Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS

Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS 2.1. Divisió de polinomis. Podem fer la divisió entre dos monomis, sempre que m > n. Si hem de fer una divisió de dos polinomis, anirem calculant les divisions

Más detalles

Examen FINAL M2 FIB-UPC 11 de gener de 2017

Examen FINAL M2 FIB-UPC 11 de gener de 2017 Examen FINAL M FIB-UPC 11 de gener de 017 1. (3 punts) Sigui {a n } la successió tal que: a 1 = 56 i a n+1 = a n per a tot n > 1. a) Proveu que 1 a n 56, per a tot n 1. b) Proveu que {a n } és decreixent.

Más detalles

ANÀLISI. MATEMÀTIQUES-2

ANÀLISI. MATEMÀTIQUES-2 1. ANÀLISI. Caldrà repassar alguns temes de cursos anteriors, com el tema de Funcions polinòmiques i, els de Funcions reals i Límits de funcions, caldrà recordar també els gràfics i propietats més importants

Más detalles

Nom i Cognoms: Grup: Data:

Nom i Cognoms: Grup: Data: n BATX MA ) Raoneu la certesa o falsedat de les afirmacions següents: a) Si A és la matriu dels coeficients d'un sistema d'equacions lineals i Ampl és la matriu ampliada del mateix sistema. Rang(A) Rang

Más detalles

corresponent de la primera pàgina de l examen.

corresponent de la primera pàgina de l examen. Oficina d Accés a la Universitat Pàgina 1 de 5 PAU 017 SÈRIE PAUTES PER ALS CORRECTORS RECORDEU: - Podeu valorar amb tants decimals com considereu convenient, però aconsellem no fer ho amb més de dos.

Más detalles

Criteris generals per a la correcció:

Criteris generals per a la correcció: Oficina d Accés a la Universitat Pàgina 1 de 13 Sèrie 2 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts. Podeu utilitzar

Más detalles

Tema 2: GEOMETRIA ANALÍTICA AL PLA

Tema 2: GEOMETRIA ANALÍTICA AL PLA Tema : GEOMETRIA ANALÍTICA AL PLA Vector El vector AB és el segment orientat amb origen al punt A i extrem al punt B b a A B Les projeccions del vector sobre els eixos són les components del vector: a

Más detalles

Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010

Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010 Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010 Matemàtiques Sèrie 1 Dades de la persona aspirant Qualificació

Más detalles

Matemàtiques. Proves d accés a la universitat per a més grans de 25 anys. Sèrie 2. Fase específica. Convocatòria 2015

Matemàtiques. Proves d accés a la universitat per a més grans de 25 anys. Sèrie 2. Fase específica. Convocatòria 2015 Proves d accés a la universitat per a més grans de 25 anys Convocatòria 2015 Matemàtiques Sèrie 2 Fase específica Qualificació 1 2 Exercicis 3 4 5 Problema Suma de notes parcials Qualificació final Qualificació

Más detalles

PROBLEMES DE SELECTIVITAT - MATEMÀTIQUES I - SOLUCIONS

PROBLEMES DE SELECTIVITAT - MATEMÀTIQUES I - SOLUCIONS Si a=, compatible indeterminat amb un grau de llibertat (una recta) Si a, compatible determinat (un punt) x+y-z=6 Per a positiu: 6a) No b) Es demostra (Bolzano) 7a) Si a=-, són paral lels Si a -, es tallen

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍA ANALÍTICA PLANA Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Módulo del vector : Es la longitud del segmento AB, se representa por. Dirección del

Más detalles

Matemàtiques 1 - FIB

Matemàtiques 1 - FIB Matemàtiques - FI 7--7 Examen Final F Àlgebra lineal JUSTIFIQUEU TOTES LES RESPOSTES. [ punts] Siguin E i F dos espais vectorials, f : E F una aplicació lineal. (a) Digueu què ha de satisfer f per tal

Más detalles

Tècniques elementals de

Tècniques elementals de Dept. Matemàtica Aplicada IV Tècniques elementals de Càlcul i Àlgebra Exercicis bàsics Presentació Aquest document va adreçat als estudiants de nou ingrés de les escoles d enginyeria en les quals imparteix

Más detalles

= 1+ β, essent α i β paràmetres reals. a la recta r 2. i el pla Π d equació

= 1+ β, essent α i β paràmetres reals. a la recta r 2. i el pla Π d equació Problema A Setembre 0 + y z = En l espai es té la recta r i el pla Π d equacions r x + mz = 0, on x y z = 0 m és un paràmetre real a) Un vector director de la recta r b) El valor de m per al qual la recta

Más detalles

Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos

Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos DE S L U S RE S I V I C LES Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos aquells exercicis que requereixen

Más detalles

Criteris generals per a la correcció:

Criteris generals per a la correcció: Oficina d Accés a la Universitat Pàgina 1 de 22 Sèrie 2 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts. Podeu utilitzar

Más detalles

Criteris generals per a la correcció:

Criteris generals per a la correcció: Oficina d Accés a la Universitat Pàgina de Sèrie Responeu a CINC de les sis qüestions següents. En les respostes, epliqueu sempre què voleu fer i per què. Cada qüestió val punts. Podeu utilitzar calculadora,

Más detalles

16 febrer 2016 Integrals exercicis. 3 Integrals

16 febrer 2016 Integrals exercicis. 3 Integrals I. E. S. JÚLIA MINGUELL Matemàtiques 2n BAT. 16 febrer 2016 Integrals exercicis 3 Integrals 28. Troba una funció primitiva de les següents funcions: () = 1/ () = 3 h() = 2 () = 4 () = cos () = sin () =

Más detalles

Matemàtiques. Proves d accés a la Universitat per a més grans de 25 anys. Sèrie. el polinomi 2. Solució: tercera arrel. i , i.

Matemàtiques. Proves d accés a la Universitat per a més grans de 25 anys. Sèrie. el polinomi 2. Solució: tercera arrel. i , i. Pàgina 1 5 Proves d accés a la Universitat per a més grans 5 anys Abril 015 Sèrie Exercicis Opció A A1.- Consireu el polinomi 7 6. Justifiqueu que 1 i són dues arrels l polinomi. Determineu la tercera

Más detalles

QUADERN D ESTIU 4t ESO MATEMÀTIQUES

QUADERN D ESTIU 4t ESO MATEMÀTIQUES QUADERN D ESTIU t ESO MATEMÀTIQUES Alumne:... Curs/Grup:... Data:... Professor/a:... INS Antoni de Martí i Franquès Departament de Matemàtiques Curs 0-0 Valoració del/de la professor/a: TREBALL D ESTIU

Más detalles

FUNCIONS REALS. MATEMÀTIQUES-1

FUNCIONS REALS. MATEMÀTIQUES-1 FUNCIONS REALS. 1. El concepte de funció. 2. Domini i recorregut d una funció. 3. Característiques generals d una funció. 4. Funcions definides a intervals. 5. Operacions amb funcions. 6. Les successions

Más detalles

P =

P = RECULL DE PROBLEMES SOBRE MTRIUS I DETERMINNTS QUE HN SORTIT LES PROVES DE SELECTIVITT ) PU LOGSE 004 Sèrie Qüestió 3: Considereu les matrius compleixi X + = B. = i B =. Trobeu una matriu X que ) PU LOGSE

Más detalles

Vector unitari Els vectors unitaris tenen de mòdul la unitat. Calculem el vector unitari del vector següent manera: ( ) ( )

Vector unitari Els vectors unitaris tenen de mòdul la unitat. Calculem el vector unitari del vector següent manera: ( ) ( ) GEOMETRIA EN L ESPAI VECTORS EN L ESPAI OPERACIONS AMB VECTORS Un vector és un segment orientat en l espai que té un mòdul, una direcció i un sentit coneguts: té un extrem i un origen (Exemple: vector

Más detalles

XXXV OLIMPÍADA MATEMÀTICA

XXXV OLIMPÍADA MATEMÀTICA XXXV OLIMPÍADA MATEMÀTICA Primera fase (Catalunya) 10 de desembre de 1999, de 16 a 0h. 1. Amb quadrats i triangles equilàters de costat unitat es poden construir polígons convexos. Per exemple, es poden

Más detalles

SÈRIE 2 Pautes de correcció (PAAU2001) MATEMÀTIQUES

SÈRIE 2 Pautes de correcció (PAAU2001) MATEMÀTIQUES Oficina de Coordinació i d'organització de les PAU de Catalunya Pàgina 1 de 6 Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals (ara bé, dins de cada pregunta podeu utilitzar altres

Más detalles

TEMA 4 : Matrius i Determinants

TEMA 4 : Matrius i Determinants TEMA 4 : Matrius i Determinants MATRIUS 4.1. NOMENCLATURA. DEFINICIÓ Una matriu és un conjunt de mxn elements distribuïts en m files i n columnes, A= Aquesta és una matriu de m files per n columnes. És

Más detalles

TEMA 1 : Aplicacions de les derivades

TEMA 1 : Aplicacions de les derivades TEMA 1 : Aplicacions de les derivades 1.1. INFORMACIÓ EXTRETA DE LA PRIMERA DERIVADA 1.1.1 Creixement i decreixement de funcions Definició: f és creixent en x 0 existeix (x 0 - a, x 0 + a), un entorn del

Más detalles

TEMA 4 : Programació lineal

TEMA 4 : Programació lineal TEMA 4 : Programació lineal 4.1. SISTEMES D INEQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITA La solució d aquest sistema és l intersecció de les regions que correspon a la solució de cadascuna de les inequacions

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 22 PAU 2014

Oficina d Accés a la Universitat Pàgina 1 de 22 PAU 2014 Oficina d Accés a la Universitat Pàgina 1 de 22 SÈRIE 3 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts. Podeu utilitzar

Más detalles

Tema 3: EQUACIONS I INEQUACIONS

Tema 3: EQUACIONS I INEQUACIONS Tema 3: EQUACIONS I INEQUACIONS Igualtats algebraiques Es poden diferenciar: identitats i equacions a) Identitats Són igualtats que sempre es compleixen, per qualsevol valor numèric que donem a les lletres.

Más detalles

LES FRACCIONS Una fracció és part de la unitat Un tot es pren com a unitat La fracció expressa un valor amb relació a aquest tot

LES FRACCIONS Una fracció és part de la unitat Un tot es pren com a unitat La fracció expressa un valor amb relació a aquest tot LES FRACCIONS Termes d una fracció: a b Numerador Denominador 1.- ELS TRES SIGNIFICATS D UNA FRACCIÓ 1.1. Una fracció és part de la unitat Un tot es pren com a unitat La fracció expressa un valor amb relació

Más detalles

Equacions Diferencials 10 de Gener de 2014

Equacions Diferencials 10 de Gener de 2014 Equacions Diferencials de Gener de 24 243 - Problemes Temps: 2 hores 5 minuts 2,5 punts Contesteu les següents preguntes independents entre sí a Considereu el sistema X α t = AXt amb A =, α R. α a. Classifiqueu-lo.

Más detalles

Generalitat de Catalunya Departament d Educació Institut d Educació Secundària Jaume Balmes. Nom i Cognoms: Grup: Data:

Generalitat de Catalunya Departament d Educació Institut d Educació Secundària Jaume Balmes. Nom i Cognoms: Grup: Data: Generalitat de Catalunya Departament d Educació Institut d Educació Secundària Jaume Balmes Departament de Matemàtiques n BATX MA Eamen FINAL Nom i Cognoms: Grup: Data: -5-007 r BLOC: ) Trobeu els límits:

Más detalles

EXERCICIS - SOLUCIONS

EXERCICIS - SOLUCIONS materials del curs de: MATEMÀTIQUES SISTEMES D EQUACIONS EXERCICIS - SOLUCIONS AUTOR: Xavier Vilardell Bascompte xevi.vb@gmail.com ÚLTIMA REVISIÓ: 21 d abril de 2009 Aquests materials han estat realitzats

Más detalles

LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció exponencial

LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció exponencial LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció eponencial La funció eponencial és de la forma f () = a, on a > 0, a 1 El valor a s anomena base de la funció eponencial.

Más detalles

EXERCICIS - SOLUCIONS

EXERCICIS - SOLUCIONS materials del curs de: MATEMÀTIQUES SISTEMES D EQUACIONS EXERCICIS - SOLUCIONS AUTOR: Xavier Vilardell Bascompte evi.vb@gmail.com www.elu.net CORRECCIÓ: Montse Ramos ÚLTIMA REVISIÓ: 1 d abril de 009 Aquests

Más detalles

Nom i Cognoms: Grup: Data:

Nom i Cognoms: Grup: Data: Generalitat de Catalunya Departaent d Educació Institut d Educació Secundària Jaue Bales Departaent de Mateàtiques n BATX MA Àlgebra i vectors No i Cognos: Grup: Data: 1) Discutiu i resoleu en els casos

Más detalles

1. RECTA TANGENT I NORMAL 2. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS

1. RECTA TANGENT I NORMAL 2. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS APLICACIONS DE LA DERIVADA 1. RECTA TANGENT I NORMAL. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS 1. RECTA TANGENT I NORMAL 1.1 Trobeu l equació

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 16 PAU cx by + 2z = b. 2a+b c = a+c 2b 1 b = a b c

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 16 PAU cx by + 2z = b. 2a+b c = a+c 2b 1 b = a b c Oficina d Organització de Proves d Accés a la Universitat Pàgina de 6 PAU 0 SÈRIE 4.- Sabem que el vector (,, ) és solució del sistema ax + by + cz = a+c bx y + bz = a b c. cx by + z = b Calculeu el valor

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 21 PAU 2016

Oficina d Accés a la Universitat Pàgina 1 de 21 PAU 2016 Oficina d Accés a la Universitat Pàgina 1 de 21 SÈRIE 3 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts. Podeu utilitzar

Más detalles

Cognoms i Nom: Examen parcial de Física - ELECTRÒNICA 1 de desembre de 2016

Cognoms i Nom: Examen parcial de Física - ELECTRÒNICA 1 de desembre de 2016 1 de desembre de 016 Model A Qüestions: 50% de l examen A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.5 punts, en blanc =

Más detalles